Why the Future Doesn’t Need Us (abridged)

Our most powerful 21st-century technologies — robotics, genetic engineering, and nanotech — are threatening to make humans an endangered species.

From the moment I became involved in the creation of new technologies, their ethical dimensions have concerned me, but it was only in the autumn of 1998 that I became anxiously aware of how great are the dangers facing us in the 21st century. I can date the onset of my unease to the day I met Ray Kurzweil, the deservedly famous inventor of the first reading machine for the blind and many other amazing things. Ray and I were both speakers at George Gilder’s Telecoms conference, and I encountered him by chance in the bar of the hotel after both our sessions were over. I was sitting with John Searle, a Berkeley philosopher who studies consciousness. While we were talking, Ray approached and a conversation began, the subject of which haunts me to this day. I had missed Ray’s talk and the subsequent panel that Ray and John had been on, and they now picked right up where they’d left off, with Ray saying that the rate of improvement of technology was going to accelerate and that we were going to become robots or fuse with robots or something like that, and John countering that this couldn’t happen, because the robots couldn’t be conscious.

While I had heard such talk before, I had always felt sentient robots were in the realm of science fiction. But now, from someone I respected, I was hearing a strong argument that they were a near-term possibility. I was taken aback, especially given Ray’s proven ability to imagine and create the future. I already knew that new technologies like genetic engineering and nanotechnology were giving us the power to remake the world, but a realistic and imminent scenario for intelligent robots surprised me. It’s easy to get jaded about such breakthroughs. We hear in the news almost every day of some kind of technological or scientific advance. Yet this was no ordinary prediction. In the hotel bar, Ray gave me a partial preprint of his then-forthcoming book The Age of Spiritual Machines, which outlined a utopia he foresaw — one in which humans gained near immortality by becoming one with robotic technology. On reading it, my sense of unease only intensified; I felt sure he had to be understating the dangers, understating the probability of a bad outcome along this path. I found myself most troubled by a passage detailing a dystopian scenario:

First let us postulate that the computer scientists succeed in developing intelligent machines that can do all things better than human beings can do them. In that case presumably all work will be done by vast, highly organized systems of machines and no human effort will be necessary. Either of two cases might occur. The machines might be permitted to make all of their own decisions without human oversight, or else human control over the machines might be retained.

If the machines are permitted to make all their own decisions, we can’t make any
conjectures as to the results, because it is impossible to guess how such machines might behave. We only point out that the fate of the human race would be at the mercy of the machines. It might be argued that the human race would never be foolish enough to hand over all the power to the machines. But we are suggesting neither that the human race would voluntarily turn power over to the machines nor that the machines would willfully seize power. What we do suggest is that the human race might easily permit itself to drift into a position of such dependence on the machines that it would have no practical choice but to accept all of the machines’ decisions. As society and the problems that face it become more and more complex and machines become more and more intelligent, people will let machines make more of their decisions for them, simply because machine-made decisions will bring better results than man-made ones. Eventually a stage may be reached at which the decisions necessary to keep the system running will be so complex that human beings will be incapable of making them intelligently. At that stage the machines will be in effective control. People won’t be able to just turn the machines off, because they will be so dependent on them that turning them off would amount to suicide.

On the other hand it is possible that human control over the machines may be retained. In that case the average man may have control over certain private machines of his own, such as his car or his personal computer, but control over large systems of machines will be in the hands of a tiny elite — just as it is today, but with two differences. Due to improved techniques the elite will have greater control over the masses; and because human work will no longer be necessary the masses will be superfluous, a useless burden on the system. If the elite is ruthless they may simply decide to exterminate the mass of humanity. If they are humane they may use propaganda or other psychological or biological techniques to reduce the birth rate until the mass of humanity becomes extinct, leaving the world to the elite. Or, if the elite consists of soft-hearted liberals, they may decide to play the role of good shepherds to the rest of the human race. They will see to it that everyone’s physical needs are satisfied, that all children are raised under psychologically hygienic conditions, that everyone has a wholesome hobby to keep him busy, and that anyone who may become dissatisfied undergoes “treatment” to cure his “problem.” Of course, life will be so purposeless that people will have to be biologically or psychologically engineered either to remove their need for the power process or make them “sublimate” their drive for power into some harmless hobby. These engineered human beings may be happy in such a society, but they will most certainly not be free. They will have been reduced to the status of domestic animals.*

In the book, you don’t discover until you turn the page that the author of this passage is Theodore Kaczynski — the Unabomber. I am no apologist for Kaczynski. His bombs killed three people during a 17-year terror campaign and wounded many others. One of his bombs gravely injured my friend David Gelernter, one of the most brilliant and visionary computer scientists of our time. Like many of my colleagues, I felt that I could easily have been the Unabomber’s next target.

Kaczynski’s actions were murderous and, in my view, criminally insane. He is clearly a Luddite, but simply saying this does not dismiss his argument; as difficult as it is for me to acknowledge, I saw some merit in the reasoning in this single passage. I felt compelled to confront it. Kaczynski’s dystopian vision describes unintended consequences, a well-known problem with the design and use of technology, and one that is clearly related to Murphy’s law — “Anything

* The passage Kurzweil quotes is from Kaczynski’s Unabomber Manifesto, which was published jointly, under duress, by The New York Times and The Washington Post to attempt to bring his campaign of terror to an end.
that can go wrong, will.” (Actually, this is Finagle’s law, which in itself shows that Finagle was right.) Our overuse of antibiotics has led to what may be the biggest such problem so far: the emergence of antibiotic-resistant and much more dangerous bacteria. Similar things happened when attempts to eliminate malarial mosquitoes using DDT caused them to acquire DDT resistance; malarial parasites likewise acquired multi-drug-resistant genes.

The cause of many such surprises seems clear: The systems involved are complex, involving interaction among and feedback between many parts. Any changes to such a system will cascade in ways that are difficult to predict; this is especially true when human actions are involved.

I decided it was time to talk to my friend Danny Hillis. Danny became famous as the cofounder of Thinking Machines Corporation, which built a very powerful parallel supercomputer. Despite my current job title of Chief Scientist at Sun Microsystems, I am more a computer architect than a scientist, and I respect Danny’s knowledge of the information and physical sciences more than that of any other single person I know. Danny is also a highly regarded futurist who thinks long-term — four years ago he started the Long Now Foundation, which is building a clock designed to last 10,000 years, in an attempt to draw attention to the pitifully short attention span of our society. So I flew to Los Angeles for the express purpose of having dinner with Danny and his wife, Pati. I went through my now-familiar routine, trotting out the ideas and passages that I found so disturbing. Danny's answer — directed specifically at Kurzweil’s scenario of humans merging with robots — came swiftly, and quite surprised me. He said, simply, that the changes would come gradually, and that we would get used to them.

But I guess I wasn’t totally surprised. I had seen a quote from Danny in Kurzweil’s book in which he said, “I’m as fond of my body as anyone, but if I can be 200 with a body of silicon, I’ll take it.” It seemed that he was at peace with this process and its attendant risks, while I was not.

The 21st-century technologies — genetics, nanotechnology, and robotics (GNR) — are so powerful that they can spawn whole new classes of accidents and abuses. These accidents and abuses are widely within the reach of individuals or small groups. Knowledge alone will enable the use of them.

Thus we have the possibility not just of weapons of mass destruction (WMD) but of knowledge-enabled mass destruction (KMD), this destructiveness hugely amplified by the power of self-replication.

I think it is no exaggeration to say we are on the cusp of the further perfection of extreme evil, an evil whose possibility spreads well beyond that which weapons of mass destruction bequeathed to the nation-states, on to a surpris-
Failing to understand the consequences of our inventions while we are in the rapture of discovery and innovation seems to be a common fault of scientists and technologists.

But while I was aware of the moral dilemmas surrounding technology’s consequences in fields like weapons research, I did not expect that I would confront such issues in my own field, or at least not so soon.

Perhaps it is always hard to see the bigger impact while you are in the vortex of a change. Failing to understand the consequences of our inventions while we are in the rapture of discovery and innovation seems to be a common fault of scientists and technologists; we have long been driven by the overarching desire to know that is the nature of science’s quest, not stopping to notice that the progress to newer and more powerful technologies can take on a life of its own.

I have long realized that the big advances in information technology come not from the work of computer scientists, computer architects, or electrical engineers, but from that of physical scientists. The physicists Stephen Wolfram and Brosl Hasslacher introduced me, in the early 1980s, to chaos theory and nonlinear systems. In the 1990s, I learned about complex systems from conversations with Danny Hillis, the biologist Stuart Kauffman, the Nobel-laureate physicist Murray Gell-Mann, and others. Most recently, Hasslacher and the electrical engineer and device physicist Mark Reed have been giving me insight into the incredible possibilities of molecular electronics.

In my own work, as codesigner of three microprocessor architectures — SPARC, picoJava, and MAJC — and as the designer of several implementations thereof, I’ve been afforded a deep and firsthand acquaintance with Moore’s law. For decades, Moore’s law has correctly predicted the exponential rate of improvement of semiconductor technology. Until last year I believed that the rate of advances predicted by Moore’s law might continue only until roughly 2010, when some physical limits would begin to be reached. It was not obvious to me that a new technology would arrive in time to keep performance advancing smoothly.

But because of the recent rapid and radical progress in molecular electronics — where individual atoms and molecules replace lithographically drawn transistors — and related nanoscale technologies, we should be able to meet or exceed the Moore’s law rate of progress for another 30 years. By 2030, we are likely to be able to build machines, in quantity, a million times as powerful as the personal computers of today — sufficient to implement the dreams of Kurzweil and [others].

As this enormous computing power is combined with the manipulative advances of the physical sciences and the new, deep understandings in genetics, enormous transformative power is being unleashed. These combinations open up the opportunity to completely redesign the world, for better or worse: The replicating and evolving processes that have been confined to the natural world are about to become realms of human endeavor.

In designing software and microprocessors, I have never had the feeling that I
The software and hardware is so fragile and the capabilities of the machine to “think” so clearly absent that, even as a possibility, this has always seemed very far in the future. But now, with the prospect of human-level computing power in about 30 years, a new idea suggests itself: that I may be working to create tools which will enable the construction of the technology that may replace our species.

We can’t simply do our science and not worry about these ethical issues.

How do I feel about this? Very uncomfortable. Having struggled my entire career to build reliable software systems, it seems to me more than likely that this future will not work out as well as some people may imagine. My personal experience suggests we tend to overestimate our design abilities.

Given the incredible power of these new technologies, shouldn’t we be asking how we can best coexist with them? And if our own extinction is a likely, or even possible, outcome of our technological development, shouldn’t we proceed with great caution?

The book that made a big impression on me, in the mid-’80s, was Eric Drexler’s Engines of Creation, in which he described beautifully how manipulation of matter at the atomic level could create a utopian future of abundance, where just about everything could be made cheaply, and almost any imaginable disease or physical problem could be solved using nanotechnology and artificial intelligence.

A subsequent book, Unbounding the Future: The Nanotechnology Revolution, which Drexler cowrote, imagines some of the changes that might take place in a world where we had molecular-level “assemblers.” Assemblers could make possible incredibly low-cost solar power, cures for cancer and the common cold by augmentation of the human immune system, essentially complete cleanup of the environment, incredibly inexpensive pocket supercomputers — in fact, any product would be manufacturable by assemblers at a cost no greater than that of wood — spaceflight more accessible than transoceanic travel today, and restoration of extinct species.

I remember feeling good about nanotechnology after reading Engines of Creation. As a technologist, it gave me a sense of calm — that is, nanotechnology showed us that incredible progress was possible, and indeed perhaps inevitable. If nanotechnology was our future, then I didn’t feel pressed to solve so many problems in the present. I would get to Drexler’s utopian future in due time; I might as well enjoy life more in the here and now. It didn’t make sense, given his vision, to stay up all night, all the time.

Drexler’s vision also led to a lot of good fun. I would occasionally get to describe the wonders of nanotechnology to others who had not heard of it. After teasing them with all the things Drexler described, I would give a homework assignment of my own: “Use nanotechnology to create a vampire; for extra credit create an antidote.”

With these wonders came clear dangers, of which I was acutely aware. As I said at a nanotechnology conference in 1989, “We can’t simply do our science and...”
I am struck by how much greater I judge the dangers to be now than even Drexler seemed to then.

Unfortunately it is far easier to create destructive uses for nanotechnology than constructive ones.

not worry about these ethical issues.” But my subsequent conversations with physicists convinced me that nanotechnology might not even work — or, at least, it wouldn’t work anytime soon. Shortly thereafter I moved to Colorado, to a skunk works I had set up, and the focus of my work shifted to software for the Internet, specifically on ideas that became Java and Jini.

Then, last summer, Brosl Hasslacher told me that nanoscale molecular electronics was now practical. This was new news, at least to me, and I think to many people — and it radically changed my opinion about nanotechnology. It sent me back to *Engines of Creation*. Rereading Drexler’s work after more than 10 years, I was dismayed to realize how little I had remembered of its lengthy section called “Dangers and Hopes,” including a discussion of how nanotechnologies can become “engines of destruction.” Indeed, in my rereading of this cautionary material today, I am struck by how naive some of Drexler’s safeguard proposals seem, and how much greater I judge the dangers to be now than even he seemed to then. (Having anticipated and described many technical and political problems with nanotechnology, Drexler started the Foresight Institute in the late 1980s “to help prepare society for anticipated advanced technologies” — most important, nanotechnology.)

The enabling breakthrough to assemblers seems quite likely within the next 20 years. Molecular electronics — the new subfield of nanotechnology where individual molecules are circuit elements — should mature quickly and become enormously lucrative within this decade, causing a large incremental investment in all nanotechnologies.

Unfortunately, as with nuclear technology, it is far easier to create destructive uses for nanotechnology than constructive ones. Nanotechnology has clear military and terrorist uses, and you need not be suicidal to release a massively destructive nanotechnological device — such devices can be built to be selectively destructive, affecting, for example, only a certain geographical area or a group of people who are genetically distinct.

An immediate consequence of the Faustian bargain in obtaining the great power of nanotechnology is that we run a grave risk — the risk that we might destroy the biosphere on which all life depends. As Drexler explained:

“Plants” with “leaves” no more efficient than today’s solar cells could outcompete real plants, crowding the biosphere with an inedible foliage. Tough omnivorous “bacteria” could out-compete real bacteria: They could spread like blowing pollen, replicate swiftly, and reduce the biosphere to dust in a matter of days. Dangerous replicators could easily be too tough, small, and rapidly spreading to stop — at least if we make no preparation. We have trouble enough controlling viruses and fruit flies.

Among the cognoscenti of nanotechnology, this threat has become known as the “gray goo problem.” Though masses of uncontrolled replicators need not be gray or gooey, the term “gray goo” emphasizes that replicators able to obliterate life might be less inspiring than a single species of crabgrass. They might be superior in an evolutionary sense, but this need not make them valuable.

The gray goo threat makes one thing perfectly clear: We cannot afford certain
Gray goo would surely be a depressing ending to our human adventure on Earth, far worse than mere fire or ice, and one that could stem from a simple laboratory accident.

It is most of all the power of destructive self-replication in genetics, nanotechnology, and robotics (GNR) that should give us pause. Self-replication is the modus operandi of genetic engineering, which uses the machinery of the cell to replicate its designs, and the prime danger underlying gray goo in nanotechnology. Stories of run-amok robots like the Borg, replicating or mutating to escape from the ethical constraints imposed on them by their creators, are well established in our science fiction books and movies. It is even possible that self-replication may be more fundamental than we thought, and hence harder — or even impossible — to control. A recent article* by Stuart Kauffman in Nature titled "Self-Replication: Even Peptides Do It" discusses the discovery that a 32-amino-acid peptide can "autocatalyse its own synthesis." We don't know how widespread this ability is, but Kauffman notes that it may hint at "a route to self-reproducing molecular systems on a basis far wider than Watson-Crick base-pairing."

In truth, we have had in hand for years clear warnings of the dangers inherent in widespread knowledge of GNR technologies — of the possibility of knowledge alone enabling mass destruction. But these warnings haven’t been widely publicized; the public discussions have been clearly inadequate. There is no profit in publicizing the dangers.

The nuclear, biological, and chemical (NBC) technologies used in 20th-century weapons of mass destruction were and are largely military, developed in government laboratories. In sharp contrast, the 21st-century GNR technologies have clear commercial uses and are being developed almost exclusively by corporate enterprises. In this age of triumphant commercialism, technology — with science as its handmaiden — is delivering a series of almost magical inventions that are the most phenomenally lucrative ever seen. We are aggressively pursuing the promises of these new technologies within the now-unchallenged system of global capitalism and its manifold financial incentives and competitive pressures. This is the first moment in the history of our planet when any species, by its own voluntary actions, has become a danger to itself — as well as to vast numbers of others.

Nearly 20 years ago, in the documentaryThe Day After Trinity, Freeman Dyson summarized the scientific attitudes that brought us to the nuclear precipice:

I have felt it myself. The glitter of nuclear weapons. It is irresistible if you come to them as a scientist. To feel it’s there in your hands, to release this energy that fuels the stars, to let it do your bidding. To perform these miracles, to lift a million tons of rock into the sky. It is something that gives people an illusion of illimitable power, and it is, in some ways, responsible for all our troubles — this, what you might call technical arrogance, that overcomes people when they see what they can do with their minds.*
Now, as then, we are creators of new technologies and stars of the imagined future, driven — this time by great financial rewards and global competition — despite the clear dangers, hardly evaluating what it may be like to try to live in a world that is the realistic outcome of what we are creating and imagining.

In 1947, The Bulletin of the Atomic Scientists began putting a Doomsday Clock on its cover. For more than 50 years, it has shown an estimate of the relative nuclear danger we have faced, reflecting the changing international conditions. The hands on the clock have moved 15 times and today, standing at nine minutes to midnight, reflect continuing and real danger from nuclear weapons. The recent addition of India and Pakistan to the list of nuclear powers has increased the threat of failure of the nonproliferation goal, and this danger was reflected by moving the hands closer to midnight in 1998.

In our time, how much danger do we face, not just from nuclear weapons, but from all of these technologies? How high are the extinction risks? The philosopher John Leslie has studied this question and concluded that the risk of human extinction is at least 30 percent, while Ray Kurzweil believes we have “a better than even chance of making it through,” with the caveat that he has “always been accused of being an optimist.” Not only are these estimates not encouraging, but they do not include the probability of many horrid outcomes that lie short of extinction.

Another idea is to erect a series of shields to defend against each of the dangerous technologies. The Strategic Defense Initiative, proposed by the Reagan administration, was an attempt to design such a shield against the threat of a nuclear attack from the Soviet Union. But as Arthur C. Clarke, who was privy to discussions about the project, observed: “Though it might be possible, at vast expense, to construct local defense systems that would ‘only’ let through a few percent of ballistic missiles, the much touted idea of a national umbrella was nonsense. Luis Alvarez, perhaps the greatest experimental physicist of this century, remarked to me that the advocates of such schemes were ‘very bright guys with no common sense.’”

Clarke continued: “Looking into my often cloudy crystal ball, I suspect that a total defense might indeed be possible in a century or so. But the technology involved would produce, as a by-product, weapons so terrible that no one would bother with anything as primitive as ballistic missiles.”

In Engines of Creation, Eric Drexler proposed that we build an active nanotechnological shield — a form of immune system for the biosphere — to defend against dangerous replicators of all kinds that might escape from laboratories or otherwise be maliciously created. But the shield he proposed would itself be extremely dangerous — nothing could prevent it from developing autoimmune problems and attacking the biosphere itself.

Similar difficulties apply to the construction of shields against robotics and genetic engineering. These technologies are too powerful to be shielded against in the time frame of interest; even if it were possible to implement defensive shields, the side effects of their development would be at least as dangerous as
The only realistic alternative I see is relinquishment: to limit development of the technologies that are too dangerous, by limiting our pursuit of certain kinds of knowledge.

Yes, I know, knowledge is good, as is the search for new truths. We have been seeking knowledge since ancient times. Aristotle opened his Metaphysics with the simple statement: “All men by nature desire to know.” We have, as a bedrock value in our society, long agreed on the value of open access to information, and recognize the problems that arise with attempts to restrict access to and development of knowledge. In recent times, we have come to revere scientific knowledge. But despite the strong historical precedents, if open access to and unlimited development of knowledge henceforth puts us all in clear danger of extinction, then common sense demands that we reexamine even these basic, long-held beliefs.

It was Nietzsche who warned us, at the end of the 19th century, not only that God is dead but that “faith in science, which after all exists undeniably, cannot owe its origin to a calculus of utility; it must have originated in spite of the fact that the disutility and dangerousness of the ‘will to truth,’ of ‘truth at any price’ is proved to it constantly.” It is this further danger that we now fully face — the consequences of our truth seeking. The truth that science seeks can certainly be considered a dangerous substitute for God if it is likely to lead to our extinction. If we could agree, as a species, what we wanted, where we were headed, and why, then we would make our future much less dangerous — then we might understand what we can and should relinquish. Otherwise, we can easily imagine an arms race developing over GNR technologies, as it did with the NBC technologies in the 20th century. This is perhaps the greatest risk, for once such a race begins, it’s very hard to end it. This time — unlike during the Manhattan Project — we aren’t in a war, facing an implacable enemy that is threatening our civilization; we are driven, instead, by our habits, our desires, our economic system, and our competitive need to know.

I believe that we all wish our course could be determined by our collective values, ethics, and morals. If we had gained more collective wisdom over the past few thousand years, then a dialogue to this end would be more practical, and the incredible powers we are about to unleash would not be nearly so troubling.

One would think we might be driven to such a dialogue by our instinct for self-preservation. Individuals clearly have this desire, yet as a species our behavior seems to be not in our favor. In dealing with the nuclear threat, we often spoke dishonestly to ourselves and to each other, thereby greatly increasing the risks. Whether this was politically motivated, or because we chose not to think ahead, or because when faced with such grave threats we acted irrationally out of fear, I do not know, but it does not bode well. The new Pandora’s boxes of genetics, nanotechnology, and robotics are almost open, yet we seem hardly to have noticed. Ideas can’t be put back in a box; unlike uranium or plutonium, they don’t need to be mined and refined, and they can be freely copied. Once they are out, they are out. Churchill remarked, in a famous left-handed compliment,
that the American people and their leaders “invariably do the right thing, after
they have examined every other alternative.” In this case, however, we must
act more presciently, as to do the right thing only at last may be to lose the
chance to do it at all.

The last chance to assert
control — the fail-safe point —
is rapidly approaching.

We are being propelled into this new century with no plan, no control, no
brakes. Have we already gone too far down the path to alter course? I don’t
believe so, but we aren’t trying yet, and the last chance to assert control — the
fail-safe point — is rapidly approaching.

I frankly believe that the situation in 1945 was simpler than the one we now
face: The nuclear technologies were reasonably separable into commercial and
military uses, and monitoring was aided by the nature of atomic tests and the
ease with which radioactivity could be measured. Research on military applications
could be performed at national laboratories such as Los Alamos, with the
results kept secret as long as possible.

The GNR technologies do not divide clearly into commercial and military uses;
given their potential in the market, it’s hard to imagine pursuing them only in
national laboratories. With their widespread commercial pursuit, enforcing
relinquishment will require a verification regime similar to that for biological
weapons, but on an unprecedented scale. This, inevitably, will raise tensions
between our individual privacy and desire for proprietary information, and the
need for verification to protect us all. We will undoubtedly encounter strong
resistance to this loss of privacy and freedom of action.

It is now more than a year since my first encounter with Ray Kurzweil and John
Searle. I see around me cause for hope in the voices for caution and relinquish-
ment and in those people I have discovered who are as concerned as I am about
our current predicament. I feel, too, a deepened sense of personal responsibility
— not for the work I have already done, but for the work that I might yet do, at
the confluence of the sciences. But many other people who know about the
dangers still seem strangely silent. When pressed, they trot out the “this is
nothing new” riposte — as if awareness of what could happen is response
enough. They tell me, There are universities filled with bioethicists who study
this stuff all day long. They say, All this has been written about before, and by
experts. They complain, Your worries and your arguments are already old hat. I
don’t know where these people hide their fear. As an architect of complex
systems I enter this arena as a generalist. But should this diminish my con-
cerns? I am aware of how much has been written about, talked about, and
lectured about so authoritatively. But does this mean it has reached people?
Does this mean we can discount the dangers before us?

Knowing is not a rationale for not acting. Can we doubt that knowledge has
become a weapon we wield against ourselves?
Henceforth, for me, progress will be somewhat bittersweet.

My continuing professional work is on improving the reliability of software. Software is a tool, and as a toolbuilder I must struggle with the uses to which the tools I make are put. I have always believed that making software more reliable, given its many uses, will make the world a safer and better place; if I were to come to believe the opposite, then I would be morally obligated to stop this work. I can now imagine such a day may come.

This all leaves me not angry but at least a bit melancholic. Henceforth, for me, progress will be somewhat bittersweet.

Do you remember the beautiful penultimate scene in Manhattan where Woody Allen is lying on his couch and talking into a tape recorder? He is writing a short story about people who are creating unnecessary, neurotic problems for themselves, because it keeps them from dealing with more unsolvable, terrifying problems about the universe. He leads himself to the question, “Why is life worth living?” and to consider what makes it worthwhile for him: Groucho Marx, Willie Mays, the second movement of the Jupiter Symphony, Louis Armstrong’s recording of “Potato Head Blues,” Swedish movies, Flaubert’s Sentimental Education, Marlon Brando, Frank Sinatra, the apples and pears by Cézanne, the crabs at Sam Wo’s, and, finally, the showstopper: his love Tracy’s face.

Each of us has our precious things, and as we care for them we locate the essence of our humanity. In the end, it is because of our great capacity for caring that I remain optimistic we will confront the dangerous issues now before us.

In the end, it is because of our great capacity for caring that I remain optimistic we will confront the dangerous issues now before us.